Antibody-Specific Model of Amino Acid Substitution for Immunological Inferences from Alignments of Antibody Sequences
نویسندگان
چکیده
Antibodies are glycoproteins produced by the immune system as a dynamically adaptive line of defense against invading pathogens. Very elegant and specific mutational mechanisms allow B lymphocytes to produce a large and diversified repertoire of antibodies, which is modified and enhanced throughout all adulthood. One of these mechanisms is somatic hypermutation, which stochastically mutates nucleotides in the antibody genes, forming new sequences with different properties and, eventually, higher affinity and selectivity to the pathogenic target. As somatic hypermutation involves fast mutation of antibody sequences, this process can be described using a Markov substitution model of molecular evolution. Here, using large sets of antibody sequences from mice and humans, we infer an empirical amino acid substitution model AB, which is specific to antibody sequences. Compared with existing general amino acid models, we show that the AB model provides significantly better description for the somatic evolution of mice and human antibody sequences, as demonstrated on large next generation sequencing (NGS) antibody data. General amino acid models are reflective of conservation at the protein level due to functional constraints, with most frequent amino acids exchanges taking place between residues with the same or similar physicochemical properties. In contrast, within the variable part of antibody sequences we observed an elevated frequency of exchanges between amino acids with distinct physicochemical properties. This is indicative of a sui generis mutational mechanism, specific to antibody somatic hypermutation. We illustrate this property of antibody sequences by a comparative analysis of the network modularity implied by the AB model and general amino acid substitution models. We recommend using the new model for computational studies of antibody sequence maturation, including inference of alignments and phylogenetic trees describing antibody somatic hypermutation in large NGS data sets. The AB model is implemented in the open-source software CodonPhyML (http://sourceforge.net/projects/codonphyml) and can be downloaded and supplied by the user to ProGraphMSA (http://sourceforge.net/projects/prographmsa) or other alignment and phylogeny reconstruction programs that allow for user-defined substitution models.
منابع مشابه
Production of Erythropoietin-specific polyclonal Antibodies
Background: Erythropoietin, as a principal hormone promotes red blood cell production in bone marrow. Varieties of erythropoietin biosimilar are being produced by recombinant DNA technology in cell cultures. The detection or quantification of these molecules are being performed by diff erent methods which some of theme such as Western blot and enzymelinked immunosorbent assay (ELISA) require sp...
متن کاملBayesian analysis of amino acid substitution models.
Models of amino acid substitution present challenges beyond those often faced with the analysis of DNA sequences. The alignments of amino acid sequences are often small, whereas the number of parameters to be estimated is potentially large when compared with the number of free parameters for nucleotide substitution models. Most approaches to the analysis of amino acid alignments have focused on...
متن کاملExpression of Recombinant Heat-Shock Protein 70 of MCAN/IR/96/LON-49, a Tool for Diagnosis and Future Vaccine Research
Background: Heat shock protein 70 (HSP70) is present in all organisms studied so far, and is a major immunogen in infections caused by pathogens including Leishmania spp. Objective: The aim of this study was to clone and express HSP70 from L. infantum strain MCAN/IR/96/LON-49 and evaluate antibody response against HSP70 in visceral leishmaniasis (VL). Methods: The L. infantum HSP70 gene segment...
متن کامل2 , Clemens Lakner 3 and Fredrik Ronquist 4
Models of amino acid substitution present challenges beyond those often faced with the analysis of DNA sequences. The alignments of amino acid sequences are often small, whereas the number of parameters to be estimated is potentially large when compared with the number of free parameters for nucleotide substitution models. Most approaches to the analysis of amino acid alignments have focused on...
متن کاملComparative Study of Immunological and Structural Properties of Two Recombinant Vaccine Candidates against Botulinum Neurotoxin Type E
Background: Recently, botulinum neurotoxin (BoNT)-derived recombinant proteins have been suggested as potential botulism vaccines. Here, with concentrating on BoNT type E (BoNT/E), we studied two of these binding domain-based recombinant proteins: a multivalent chimer protein, which is composed of BoNT serotypes A, B and E binding subdomains, and a monovalent recombinant protein, which contains...
متن کامل